亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Survey on Differentially Private Machine Learning [Review Article]

差别隐私 机器学习 计算机科学 人工智能 大数据 信息隐私 主流 深度学习 保密 数据科学 数据挖掘 计算机安全 哲学 神学
作者
Maoguo Gong,Yu Xie,Ke Pan,Kaiyuan Feng,A. K. Qin
出处
期刊:IEEE Computational Intelligence Magazine [Institute of Electrical and Electronics Engineers]
卷期号:15 (2): 49-64 被引量:85
标识
DOI:10.1109/mci.2020.2976185
摘要

Recent years have witnessed remarkable successes of machine learning in various applications. However, machine learning models suffer from a potential risk of leaking private information contained in training data, which have attracted increasing research attention. As one of the mainstream privacy- preserving techniques, differential privacy provides a promising way to prevent the leaking of individual-level privacy in training data while preserving the quality of training data for model building. This work provides a comprehensive survey on the existing works that incorporate differential privacy with machine learning, so- called differentially private machine learning and categorizes them into two broad categories as per different differential privacy mechanisms: the Laplace/ Gaussian/exponential mechanism and the output/objective perturbation mechanism. In the former, a calibrated amount of noise is added to the non-private model and in the latter, the output or the objective function is perturbed by random noise. Particularly, the survey covers the techniques of differentially private deep learning to alleviate the recent concerns about the privacy of big data contributors. In addition, the research challenges in terms of model utility, privacy level and applications are discussed. To tackle these challenges, several potential future research directions for differentially private machine learning are pointed out.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大学生完成签到 ,获得积分10
3秒前
fat发布了新的文献求助10
4秒前
fat完成签到,获得积分10
12秒前
paradox完成签到 ,获得积分10
12秒前
JamesPei应助英俊的雁易采纳,获得10
18秒前
18秒前
有风的地方完成签到 ,获得积分10
18秒前
24秒前
27秒前
Benjamin完成签到 ,获得积分10
30秒前
31秒前
fantuan完成签到 ,获得积分10
31秒前
34秒前
34秒前
压缩饼干完成签到 ,获得积分10
36秒前
华仔应助补药再看文献乐采纳,获得10
37秒前
陈昇完成签到 ,获得积分10
44秒前
白桦林泪发布了新的文献求助10
44秒前
44秒前
50秒前
科研通AI2S应助潜龙采纳,获得10
51秒前
59秒前
1分钟前
mol完成签到 ,获得积分10
1分钟前
任性机器猫完成签到,获得积分10
1分钟前
1分钟前
任性的冷梅完成签到,获得积分10
1分钟前
1分钟前
1分钟前
唯梦完成签到 ,获得积分10
1分钟前
Tuesday完成签到 ,获得积分10
1分钟前
小野发布了新的文献求助10
1分钟前
舒服的幻梅完成签到 ,获得积分10
1分钟前
Otter完成签到,获得积分10
1分钟前
1分钟前
dxwy完成签到,获得积分10
1分钟前
瓜子完成签到 ,获得积分10
1分钟前
Candice应助星远采纳,获得10
1分钟前
木子水告完成签到,获得积分10
1分钟前
儒雅的若翠完成签到,获得积分10
1分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234488
求助须知:如何正确求助?哪些是违规求助? 2880883
关于积分的说明 8217231
捐赠科研通 2548429
什么是DOI,文献DOI怎么找? 1377761
科研通“疑难数据库(出版商)”最低求助积分说明 647999
邀请新用户注册赠送积分活动 623314